
Copyright nexB Inc.

SBOMs and Software Vulnerabilities:

Leveraging SCA for Software Supply

Chain Security

Copyright nexB Inc.

Abstract

▷ Software Bill of Materials (SBOM) and Software Composition Analysis
(SCA) have become common terminology in the software industry

▷ Understanding both is essential for managing the growing risk of
software vulnerabilities for all kinds of software and planning for
compliance with rapidly evolving regulatory and business requirements

▷ This presentation will cover:
▪ The several SBOM specifications
▪ Using SCA to find and report software licenses and vulnerabilities
▪ Overview of nexB’s DejaCode, ScanCode and VulnerableCode to

manage software supply chain risk

2

Copyright nexB Inc.

Agenda

▷ Software Supply Chain and Bills of Materials

▷ Software Composition Analysis

▷ Using SCA to create and manage SBOM data

▷ Key industry and regulatory trends to watch

NB: The primary focus of this discussion is Free and Open Source Software (FOSS) but most points also
apply to to Proprietary Software. And most modern Proprietary Software contains FOSS - often in the
range of 80% (depending on how you count).

3

Copyright nexB Inc.

Software Supply Chain

o SBOMs are a key part of the larger concept of a Software

Supply Chain

o Most concepts borrowed from discrete manufacturing

o BOMs in the software context appeared in draft legislation in

The Cyber Supply Chain Management and Transparency

Act of 2014 – focused on vulnerabilities

o The May 2021 Executive Order on Improving the Nation’s

Cybersecurity added the broader concept of software supply

chain

4

https://www.congress.gov/bill/113th-congress/house-bill/5793
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

Copyright nexB Inc.

Software Bill of Materials (SBOM)

o An SBOM is a list of software components used in a product
▪ The list is typically a hierarchy (“graph”)
▪ What is a software component? There is no standard terminology!
▪ A component may be a file (source or binary) or a package of files
▪ A package may be an archive with or without metadata

o Many possible SBOM use cases
▪ Packaged software
▪ Software deployed on a device
▪ Software deployed on the Cloud
▪ The Customer/recipient of an SBOM may be anywhere in the supply chain
▪ Anyone who distributes software in any way will likely need to produce SBOMs

5

Copyright nexB Inc.

Why SBOMs

o Providing an SBOM with your software is becoming a

requirement for doing business with US government

agencies

o Most modern software contains third-party software - FOSS

or Proprietary - which means potential risks in the areas of

licensing and vulnerabilities

o A better question might be: Why haven’t we been using

SBOMs before?

6

Copyright nexB Inc.

Why SBOMs [2]

o An SBOM is a prerequisite for managing license and

vulnerability risks from third-party software

o And for sharing that information across your supply chain

o Automation is essential to cope with the rapid and continuing

increase in the volume of FOSS packages

o And the entry point for managing these risks is agreeing

somehow on the identification of the software units across a

supply chain

7

Copyright nexB Inc.

SBOM Standards

There are currently two emerging standards for an SBOM:

o CycloneDX - https://cyclonedx.org/ - from OWASP

o SPDX - https://spdx.dev/ - from the Linux Foundation

o And one weaker candidate: SWID -

https://csrc.nist.gov/projects/Software-Identification-SWID

o It is unlikely that there will be only one standard and possible

that there will be more than two

o These are standards for data exchange, not design

standards for any particular software system

8

https://cyclonedx.org/
https://spdx.dev/
https://csrc.nist.gov/projects/Software-Identification-SWID

Copyright nexB Inc.

SBOM Standards [2]

o SBOMs are a top priority for improving software supply chain

security

o CISA* currently has five weekly meetings on the topic!

o Other standards will be required like Package URL to reliably

identify a unit of software: https://github.com/package-url/purl-

spec

o Waiting for a complete and final specification is not a realistic

option
▪ Best approach is to get started now
▪ With an expectation that standards and tools will change
▪ Just like the rest of the software domain

* CISA: Cybersecurity and Infrastructure Security Agency within DHS
9

https://github.com/package-url/purl-spec

Copyright nexB Inc.

Supply Chain Best Practices

o Software organizations can learn a lot from manufacturing

best practices

o Each organization in a supply chain is responsible for

knowing the origin and quality of the materials included in a

product at their stage of production

o This requires knowing and sharing information in the format

of BOMs and units

which means standardarizing data and

learning to translate among multiple standards

10

Copyright nexB Inc.

Software Composition Analysis

Software Composition Analysis is a set of processes and tools

that cover:

o Identification – Identify distinct “units” of third-party software

used in a product or project and their provenance

o Licensing – Determine the licensing for each software unit

o Security – Identify known security vulnerabilities for each

software unit

o Quality – Evaluate the quality of a software unit based on

software development data, such as number of bugs, fixes,

etc.

11

Copyright nexB Inc.

Software Composition Analysis [2]

A more detailed list:

o Software Component Identification

o Dependency Management

o Software Bills of Materials

o License Identification

o Vulnerability Reporting

o Code Quality Reporting

o Community Health Reporting

o SCA Management

12

Copyright nexB Inc.

Software Composition Analysis [3]

o Overall SCA needs to be a core competency for a software

development organization

o Embedded in the software development workflow from

design through release - as it is in manufacturing

o The choice of SCA tools will depend on your platform, stack

and product

13

Copyright nexB Inc.

SCA Tools

o Primary focus of SCA tools has been on security

vulnerabilities because of the perceived higher risk

o Most SCA tools have been focused on either vulnerabilities

OR licensing

o Vulnerabilities and licenses seem like oil & vinegar
▪ The communities of interest are separate - security vs legal
▪ License data may be complex but it is generally stable over time
▪ Vulnerability data is also complex, but extremely dynamic - if included directly

in an SBOM it may be wrong by the time you receive an SBOM

o But you need SCA coverage for both - plus quality

14

Copyright nexB Inc.

SCA Tools [2]

o Most current tools are Proprietary and increasingly expensive

with the surge of interest in SBOMs
▪ Trend seems to be charging based on the number of developers
▪ Good for the vendor not so much for the customer

o Proprietary solutions may work for large companies, but they

will not work across the FOSS supply chain
▪ Proprietary data about FOSS vulnerabilities is particularly

problematic as a barrier to community access and analysis
o Current hot topic is SBOMs

15

Copyright nexB Inc.

nexB SCA Tools

o Modular tools for developer with:
▪ Free and open source software (Apache 2.0)
▪ Free and open data (CC-BY-SA)

o ScanCode: Leading code scanner

o VulnerableCode: New tools and database for aggregating

vulnerability data from across the FOSS supply chain

o PurlDB: New tools and database for aggregating package

data across the FOSS supply chain

o Many other FOSS projects

o DejaCode - enterprise SCA management application

16

Copyright nexB Inc.

DejaCode
Policies Licenses

Components

Packages

Vulnerabilities

nexB SCA Solutions Overview

SBOM

PurlDB VulnerabilityDB

ScanCode.io
Software

Product

FOSS

Package

SBOM

Scans

LicenseDB

ScanCode Toolkit

package

inspectors

Attribution

container

inspector

17

Copyright nexB Inc.

DejaCode

▷ Enterprise application / system of record for:
○ Managing Inventory and BOM data
○ Defining and applying license policies
○ Identifying and addressing package vulnerabilities
○ Generating FOSS compliance documents such as Product

Attribution Notices and SBOMs

▷ Built-in integration with ScanCode.io, VulnerableCode.io and

PurlDB

▷ SaaS or on-premises

▷ See https://nexb.com/dejacode/

18

https://nexb.com/dejacode/

Copyright nexB Inc.

ScanCode

▷ Identify FOSS and other third-party components & packages
▷ Detect licenses, copyrights and dependencies
▷ ScanCode Projects include:

○ ScanCode.io: Server system with customizable pipelines and UI
○ ScanCode Toolkit: Scanning engine - use it in SCIO or as a separate

CLI or library
○ LicenseDB: 2000 licenses detected by ScanCode
○ ScanCode Workbench: Desktop app to review Toolkit Scans
○ scancode-analyzer: Analyze and improve license detection accuracy

▷ See https://nexb.com/scancode/ for more information

19

https://nexb.com/scancode/

Copyright nexB Inc.

VulnerableCode

▷ Collect and aggregate vulnerability data from many public sources
○ Projects, GitHub, Linux Distros, NVD, Package managers and more
○ Focus on upstream projects (source of the source)

▷ Apply confidence based system: not all data are equally trusted and of
equivalent quality

▷ Discover relations (and inconsistencies) between vulnerabilities and
packages from mining the graph

▷ Public VulnerableCode database is available at:
https://public.vulnerablecode.io/
▷ Also tools to build your own database
▷ Working on data sharing and curation

▷ See https://nexb.com/vulnerablecode/ for more information

20

https://public.vulnerablecode.io/
https://nexb.com/vulnerablecode/

Copyright nexB Inc.

PurlDB

▷ Collect and aggregate package metadata from many public sources
○ Package manager repositories
○ GitHub, GitLab and other source repositories
○ Linux distros
○ Focus on upstream projects (source of the source)

▷ Will support package matching as a complement to scanning
▷ Also tools to build your own database
▷ See https://github.com/nexB/purldb/ for more information

21

https://nexb.com/purldb/

Copyright nexB Inc.

Other AboutCode projects

▷ container-inspector: Analyze Docker and other images
▷ debian-inspector: Parse Debian copyright files
▷ nuget-inspector: Resolve C# dependencies
▷ python-inspector: Resolve Python dependencies
▷ aboutcode-toolkit: Generate Attribution Notices
▷ package-url (purl): URL string to identify and locate a software package

across programing languages, package managers, packaging
conventions, tools, APIs and databases.
○ Adopted by ORT, CycloneDX and many other major projects
○ See also https://github.com/package-url

○ univers: parse and compare package versions and version ranges
○ See https://github.com/nexB for the complete list of projects

22

https://github.com/package-url
https://github.com/nexB

Copyright nexB Inc.

Why nexB

▷ nexB has been recognized by marquee companies as:
○ Trusted experts in Software Composition Analysis
○ Developers of best-in-class SCA tools

▷ FOSS first mission - FOSS for FOSS
○ Our tools for FOSS/SCA are open source
○ Focused on supporting the FOSS ecosystem

▷ nexB team members are thought leaders
○ Creator of package-url: https://github.com/package-url
○ Co-founders of SPDX: https://spdx.org
○ Co-founders of ClearlyDefined: https://clearlydefined.io

23

https://github.com/package-url
https://spdx.org
https://clearlydefined.io

Copyright nexB Inc.

Contact us

▷ Contacts
○ Michael Herzog

mjherzog@nexb.com

○ Philippe Ombredanne
pombredanne@nexb.com

○ Dennis Clark

dmclark@nexb.com

▷ More information - https://www.nexb.com/

24

mailto:mjherzog@nexb.com
mailto:pombredanne@nexb.com
mailto:dmclark@nexb.com
http://www.nexb.com/

