
© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

Standardizing FOSS

package identifiers using

Package URL

Towards (mostly) universal SCA tools integration

Philippe Ombredanne, AboutCode.org nexB Inc.

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷ScanCode, VulnerableCode and AboutCode maintainer

▷Creator of Package URL, co-founder of SPDX, ClearlyDefined

▷ FOSS veteran, long time Google Summer of Code mentor

▷Co-founder and CTO of nexB Inc., makers of DejaCode

▷Weird facts and claims to fame

● Signed off on the largest deletion of lines of code in the

Linux kernel (but these were only license comments)

● Unrepentant code hoarder. Had 60,000+ GH forks

now down only to 20K forks

▷ pombredanne@gmail.com irc:pombreda

Philippe Ombredanne

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷Ever more FOSS packages are reused

●10x to 100x more than a few years ago

●But YEAH! we can really build applications from components!

▷Complex stacks with multiple tech and languages

●Deep dependency trees

●Dependencies on both application and system packages

▷Unstated dependencies across

●package ecosystem boundaries

●system and application boundaries

▷More bugs and vulnerabilities!

Software things are getting hairy and complex!!

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷Emerging imperative for appsec

● Convey the "making of" a software system or app

▷Central principle: track inventory of packages or components

▷So you must to identify software packages used

▷ ... and their license (SPDX license expression!)

▷ ... and known security bugs (CVEs)

But wait! SBOMs anyone?

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷ We could name a package just by looking at it?

● It's true name, not a "given" name.

▷ Make it so that the name is obvious for human and machines?

▷ Use this to id packages in SCA, vulnerability and dependency

management in a mostly universal way?

▷ And not replace all package managers BUT rather rule them all

What if

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

We need new standards to rule them all!

6

Credits: https://xkcd.com/927/
xkcd.com is best viewed with Netscape Navigator 4.0 or below on a Pentium 3±1 emulated in Javascript on an Apple IIGS

at a screen resolution of 1024x1. Please enable your ad blockers, disable high-heat drying, and remove your device

from Airplane Mode and set it to Boat Mode. For security reasons, please leave caps lock on while browsing.

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5

License.https://creativecommons.org/licenses/by-nc/2.5/

Package URL (purl)

▷ Problem: Each package type/ecosystem has its own conventions to identify, locate

and provision software packages

▷ Solution: An expressive package-url string, minimalist yet obvious

▷ Identify & locate software packages reliably across tools and languages.

pkg:npm/foobar@12.3.1

pkg:pypi/django@1.11.1

▷ Started with ScanCode and VulnerableCode and now adopted in many places

▷ Now a de-facto standard used in ORT, OSSF OSV, CycloneDX, SPDX, Sonatype

OSSIndex, GitHub and many places.

▷ Libraries in Java (multiple), PHP, Go, Python, JavaScript, Ruby, Swift, Rust, .Net,

▷ Recommended by the US NTIA as an SBOM package identifier

▷ See https://github.com/package-url/purl-spec

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷ Started to solve simple problems for ScanCode and

VulnerableCode in 2017

● How can we identify all packages a the simplest way?

● mish mash of Maven, npm, python, Ruby

▷ Key insight

● Each package ecosystem guarantees each name is unique

● The essence of ids is a name + a version (plus some extra)

● file 5.3 in npm is not file 5.3 in Rubygems

● npm/file@5.3 vs. gem/file@5.3 removes the ambiguity

● pkg: prefix makes it a valid URL: npm/file@5.3

Some PURL history

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷Many other projects were facing similar problems

● ORT, Openshift, Google grafeas, Libraries.io

● Borrowed concept from a similar approach at JFrog

▷ Eventually we moved the spec to its own org

● Invited as co-org owners to share control

▷ Contributions of programming language parsers poured in

▷ Adoption started quickly across many open source tools

▷ Also in vulnerability databases

Some PURL history

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

Who is using PURL?
▷ Open source SCA tools

● ScanCode, MatchCode, Tern,

ORT, Syft, Fosslight,

Anchore, Microsoft SBOM

tool, DependencyTrack, etc.

● Most other FOSS and

proprietary SCA and

Infosec/Appsec tools

▷ SBOM and VEX specs

● CycloneDX

● SPDX

● CSAF, Open VEX

▷ Mostly all SBOM Tools

● GitHub SPDX SBOM

▷ Vulnerability databases

● Google OSV

● Sonatype OSSIndex

● VulnerableCode

● GitHub Advisory DB

● Global Security DB

● NVD in v5.1!

▷ Databases of packages

metadata

● PurlDB, Ecosystems, Osselot

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

● SBOMs are everywhere

○ GitHub can even create these directly from a repo

○ But what about data quality (depth and breadth)?

○ But what about using proper machine readable identifiers (license, PURL)?

● Hi-Fi or Lo-Fi SBOMs?

● Every tool creates SBOMs but then what?

○ 2 out of 50+ folks were effectively consuming SBOMs

● Big gaps in tool-to-tool integration

● Too much over engineering, and under-specification

● Advice: Ignore the SPDX vs. CycloneDX feud and embrace both, with PURL

○ SBOM is just a reporting format

○ PURL is the key unifying id between them

SBOM anyone?

Package URL in the news

"Component verification and vulnerability

reporting are supported by some SBOM data

formats today. Globally unique identifiers is

a work in process supported by the leading

data formats for package URLs (PURLs)."

https://linuxfoundation.org/wp-content/uploads/LFResearch_SBOM_Report_final.pdf

Software Bill of Materials (SBOM) and Cybersecurity Readiness

January 2022

Stephen Hendrick, VP Research, The Linux Foundation

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

PURL is emerging as the glue to avoid lock-in!

● Key vector for interop as a universal id

○ if two tools speak PURL, integration is made easier

● You must demand its adoption by your vendors and projects

● The benefits are

○ less lock-in

○ mix and match best in class tool

○ can compare performance of tools objectively

PURL is the essential glue

Package URL quote

"Package URLs have profoundly

transformed the landscape of appsec and

infosec tooling, for the better."

A leader for an SBOM specs, March 2023

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

In conclusion: SCA AUTOMATION IS HARD

▷But it is nearly impossible if no one speaks the same

language

▷ To de-babelize this, we need shared names for:

● Licenses

● Packages

● Versions

● Vulnerabilities

● Version control references

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

▷ License names

○ Mostly solved with SPDX license ids and expressions

○ Plus scancode-licensedb DB of most FOSS licenses

▷ Software package names

○ Mostly solved with Package URL emerging as a de-facto standard

▷ Version range notation for dependencies and vulnerable ranges

○ New mini spec for Version Range Specifiers in purl project

▷ Vulnerability identifiers

○ Mostly solved with NVD's CVE and their many aliases

▷ Version control system references

○ Likely solved with VCS URLs adapted from Python pip, now in SPDX
Credit https://www.severnedgevets.co.uk/pets/advice/advice-new-kitten-owners

Credit: T.S. Eliot, "Old Possum's Book of Practical Cats"

T.S. Eliot: The Naming of Cats is a difficult matter

16

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

If you want to help

17

You can contribute code, time, docs (or cash?)

▷ Use these fine FOSS tools and specs

● https://github.com/package-url

● https://www.aboutcode.org/

● https://github.com/nexB/

▷ Join the conversation at

● https://gitter.im/aboutcode-org

▷ Donate at

● https://opencollective.com/aboutcode

© nexB Inc. License: CC-BY-SA-4.0 https://www.nexb.com/ https://www.aboutcode.org/

Credits

Special thanks to all the people who made and released

these excellent free resources:

▷ Presentation template by SlidesCarnival

▷ Photographs by Unsplash

▷ All the open source software authors that made

ScanCode and AboutCode possible

http://www.slidescarnival.com/
http://unsplash.com/

Version Range Spec (vers)

▷ Problem: Each package type/ecosystem has its own convention to specify version ranges

▷ Solution: An expressive version range string, minimalist yet obvious

▷ Specify version ranges reliably across tools and languages for deps and vulnerabilities.

vers:npm/1.2.3|>=2.0.0|<5.0.0

vers:pypi/0.0.1|0.0.2|0.0.3|1.0|2.0pre1

▷ A version range specifier ("vers") is a URI string using the vers scheme and this syntax:

▷ vers:<versioning-scheme>/<version-constraint>|<version-constraint>|...

▷ Started with VulnerableCode with "univers" library and now used in CycloneDX

● Goal is to be a useful adjunct to purl

▷ Can pave the way to universal dependency resolution engines

● Would still need to have access to all the package versions... working on it!

▷ See https://github.com/package-url/purl-spec/blob/version-range-spec/VERSION-RANGE-

SPEC.rst

